

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Raman Investigations of Biselenates. The Raman Spectra of RbHSeO_4 in the Range 20-300K

Robert L. Carter^a; Robert B. Edmonds^a; John J. McMahon^b

^a Department of Chemistry, University of Massachusetts-Boston, Boston, Massachusetts, USA ^b

Department of Chemistry, Williams College, Williamstown, Massachusetts, USA

To cite this Article Carter, Robert L. , Edmonds, Robert B. and McMahon, John J.(1982) 'Raman Investigations of Biselenates. The Raman Spectra of RbHSeO_4 in the Range 20-300K', *Spectroscopy Letters*, 15: 5, 341 — 354

To link to this Article: DOI: 10.1080/00387018208067998

URL: <http://dx.doi.org/10.1080/00387018208067998>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

RAMAN INVESTIGATIONS OF BISELENATES.

THE RAMAN SPECTRA OF RbHSeO_4 IN THE RANGE 20-300K

Key words: Raman spectra, RbHSeO_4 , ferroelectrics

Robert L. Carter and Robert B. Edmonds

Department of Chemistry
University of Massachusetts-Boston
Boston, Massachusetts 02125 USA

John J. McMahon

Department of Chemistry
Williams College
Williamstown, Massachusetts 01267 USA

Introduction

In 1977 we undertook investigations¹ of the Raman spectra of RbHSeO_4 and NH_4HSeO_4 , prior to the discovery of their ferroelectric nature by a group of workers in Poland.^{2,3} Our studies did not reveal some of the behavior reported by this group, and other studies^{4,5} have indicated phase transitions not observed by us or the Polish group.⁶⁻⁹ Consequently we have withheld publishing the results of our earlier studies pending the completion of investigations designed to verify our initial findings and to determine the relationships between our Raman spectra and the reported behavior of these compounds. This paper represents the first in a planned series of communications relating our experiences with these biselenates and our interpretations of those

points of disparity between the various studies that have been reported.

RbHSeO_4 shows a phase transition from a paraelectric to a ferroelectric phase when cooled below its Curie point, $T_c = 370.6\text{K}$.^{2,4} X-ray studies suggest that the transition is first order¹⁰ from a monoclinic lattice ($\text{P}2_1$, $Z = 3$) in the paraelectric phase¹¹ to a triclinic lattice ($\text{P}1$, $Z = 3$) in the ferroelectric phase.¹² The pseudo-orthorhombic nature of the structures and their similarity to the non-isomorphous structures of RbHSO_4 and NH_4HSO_4 prompted Waśkowska, et al.^{11,12} to choose unit cells with $Z = 6$ in the unconventional settings I2 and I1, respectively. The factor group selection rules on which the infrared and Raman spectra depend, however, are based on the primitive cells, making the conventional settings more useful for spectroscopic discussions. The present study concerns the Raman spectra of RbHSeO_4 in the temperature range 20–300K, where the compound is presumably ferroelectric. Results of our investigations from room temperature to above the phase transition point ($>98^\circ\text{C}$) will be presented in a separate paper.

Baran, et al.¹³ recently published single-crystal Raman data and infrared data from Nujol mulls and KBr pellets for RbHSeO_4 and RbDSeO_4 . All spectra were obtained at room temperature. Reference in the abstract of that paper to data obtained at 383K is apparently to room-temperature infrared spectra of samples that

had undergone prior heating to high temperature. The infrared results have limited value since selenates react strongly with the window materials in both pellets and mulls. Consequently the Raman data are most useful in discussing the relationships between vibrational spectra and crystal structure. It should be pointed out, however, that the usual direct comparisons between the spectra of deuterated and non-deuterated homologous compounds cannot be made in this case, because RbHSeO_4 and RbDSeO_4 are not isomorphous.¹⁴ Our Raman studies on polycrystalline samples of RbHSeO_4 at room temperature agree in most important aspects with those of Baran, *et al.* The low temperature results, however, reveal some aspects which are not evident at higher temperatures.

Experimental

Our experience in synthesizing both RbHSeO_4 and NH_4HSeO_4 leads us to the conclusion that samples of high purity are not obtained by most aqueous methods.¹ Analyses of samples prepared by the classical method of Norris and Kingham¹⁵ invariably showed significantly low values for H^+ , suggesting coprecipitation of $\text{SeO}_4^{=}$ with HSeO_4^- . Purity problems seemed to increase with increasing size of the crystals obtained. The presence of selenate ion in water is unavoidable, since $K_2 = 1.2 \times 10^{-2}$ for H_2SeO_4 . Furthermore, the tendency of $\text{SeO}_4^{=}$ and HSeO_4^- to coprecipitate can be seen in the existence of well-characterized compounds such as $(\text{NH}_4)_2\text{SeO}_4 \cdot 2\text{NH}_4\text{HSeO}_4$ ¹⁶ and the ferroelectric $(\text{NH}_4)_3\text{H}(\text{SeO}_4)_2$.¹⁷

Another complication arises from the oxidizing potential of selenate ion in acid:

Although selenate ion appears to be a generally sluggish oxidant, it is sufficiently strong to oxidize NH_4^+ to N_2 . This becomes important in preparing crystals of NH_4HSeO_4 by slow evaporation, where the appearance of a faint pink coloration in the product indicates formation of elemental selenium. One consequence of this is sample incineration in the beam of an argon laser at either 514.5nm or 488.0nm. Of course this is less of a problem in preparing RbHSeO_4 , but the presence of trace impurities of oxidizable material can lead to noticeably discolored product.

We have found that coprecipitation and redox problems can be avoided by mixing reactants in a medium of glacial acetic acid. The lower dielectric constant and higher acidity of this solvent suppress the second dissociation of selenic acid, while the lower solubility of the product causes rapid crystallization, which minimizes redox produced impurities. Production of acetate salts does not appear to be a problem. Analysis for H^+ by titration gives values which deviate by less than 1% from the expected values for the compounds synthesised (purity $\approx 99.5\%$). Our concern with purity arises from our experience with NH_4HSeO_4 , where sample preparation method profoundly influenced temperature dependent changes in the Raman spectra.¹

Samples of RbHSeO_4 for the present study were prepared by adding 2.5g of Rb_2CO_3 to a solution containing 20ml of 3.95M H_2SeO_4 in 200ml of glacial acetic acid. The solution was heated to 60°C to facilitate dissolving. Following filtration through a medium sintered glass frit, the cooled solution was allowed to stand over CaCl_2 under reduced pressure. Crystals which formed overnight were collected by filtration, washed with glacial acetic acid, and dried over P_2O_5 in vacuo. An analogous synthesis using RbOH yielded equally pure product. Compared to crystals obtained by the usual aqueous method, RbHSeO_4 prepared from acetic acid seems to be less hydroscopic, shows superior stability on storage, and better withstands repeated heating above 120°C . X-ray examination shows that our samples have the same triclinic morphology found by Waśkowska, et al.,¹² as indicated in Table 1.

Raman spectra were obtained with a Spex Ramalog system with an add-on third monochromator, which functioned as a fixed-frequency variable bandpass filter below 200cm^{-1} . The come-off point from the exciting frequency was typically 10cm^{-1} . Most spectra were

Source	a	b	c	α	β	γ	V	TABLE 1	
								Structure Data at Room Temperature for RbHSeO_4 (I1, $Z = 6$)	
Rev. 12	19.359	4.619	7.572	90.60	89.80	90.73	677\AA^3		
This work	19.328	4.611	7.567	90.27	89.87	90.74	674\AA^3		

excited with an argon laser operating at 514.5nm and 600-1100mw. Below 1000cm^{-1} , where sharp bands are observed, the spectral bandpass was 1cm^{-1} . Above 1000cm^{-1} , where broad and weak bands due to OH motions are observed, the spectral bandpass was $2-3\text{cm}^{-1}$. Claasen filtration or a spike filter eliminated unwanted laser frequencies, but any remaining bands of suspicious origin were verified by examining spectra obtained with krypton laser excitation (647.1nm, 500mw). A Cryogenic Technology Model 20 Cryocooler equipped with a bucking heating system provided variable temperature setting throughout the range 20-300K. A brass or aluminum sample holder provided thermal contact between the cold station of the apparatus and the polycrystalline samples contained in sealed 0.9mm o.d. capillary tubes. Several hours elapsed between setting a desired temperature and obtaining data to ensure that the sample was in thermal equilibrium with the cold station, where the thermocouple is located.

The selection rules governing infrared and Raman activity in the P1 primitive cell of ferroelectric RbHSeO_4 are non-restrictive. Following the practice of Paetzold and Amoulong,¹⁸ it is customary to assign the frequencies of HSeO_4^- ions according to the system used for tetrahedral $\text{SeO}_4^{=}$, recognizing the descent in symmetry from T_d to C_{3v} . In the crystal, the remaining two-fold degeneracies of C_{3v} are lifted by the trivial C_1 site symmetry in the triclinic lattice,

and the motions of the three unique HSeO_4^- ions may couple to give rise to $3(3N-6)$ internal modes active in both spectra. Additionally, there are 9 rotational external modes due to HSeO_4^- and 15 translational external modes due to both HSeO_4^- and Rb^+ .

Results and Discussion

Figure 1 shows the spectrum of RbHSeO_4 at 20K in the region below 1000cm^{-1} . Note that three different scales are represented in Figure 1, with highest instrumental amplification in the region below 200cm^{-1} . Figure 2 shows the region of O-H stretching, $\nu(\text{OH})$, and in-plane bending, $\delta(\text{OH})$, at temperatures between 20K and 300K. The features at 1880cm^{-1} and 1960cm^{-1} result from the glass capillary. The relatively sharp band at 1570cm^{-1} , which is most evident at low temperatures, appears to be genuine. Attempts to observe this band from capillary samples of K_2SO_4 , KHSO_4 , RbCl , and $\text{RbC}_2\text{H}_3\text{O}_2$ were unsuccessful. Tables 2-4 show the frequencies observed for RbHSeO_4 at 20K and 300K with proposed assignments. Standard deviations for the data are better than $\pm 1.1\text{cm}^{-1}$ below 1000cm^{-1} , better than $\pm 6\text{cm}^{-1}$ in the region $1000-2000\text{cm}^{-1}$, and better than $\pm 7\text{cm}^{-1}$ above 2000cm^{-1} . Owing to the breadth of the bands above 2000cm^{-1} , frequencies for the A and B components of $\nu(\text{OH})$ are limited to three significant figures.

Our room-temperature data agree in most respects with the results reported by Baran, *et al.*,¹³ if

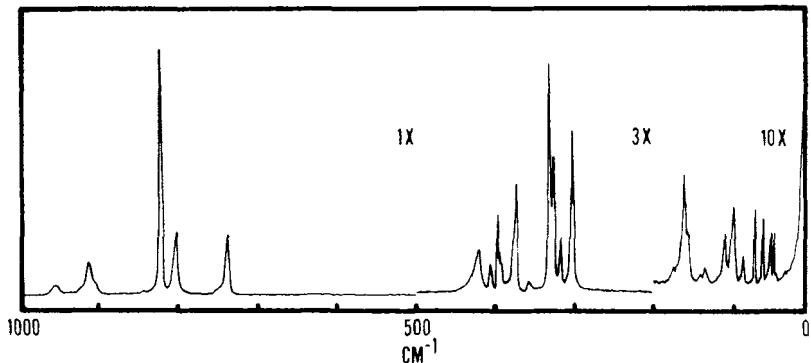


FIG. 1. Raman spectrum of RbHSeO_4 below 1000cm^{-1} at 20K.

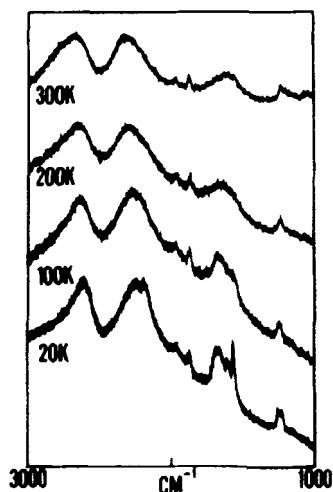


FIG. 2. Raman spectrum of RbHSeO_4 in the range $1000 - 2000\text{cm}^{-1}$ at temperatures between 20K and 300K.

allowances are made for the differences expected between polycrystal and single-crystal samples. Nonetheless, we cannot verify the weak and broad unassigned band at 250cm^{-1} which they have reported. Furthermore, in light of the stated 6cm^{-1} resolution of their study,

TABLE 2

Raman Frequencies (cm^{-1}) of RbHSeO_4 at 20K and 300K (above 1000cm^{-1})

20K	300K	Assignment
2620	2650	$\nu(\text{OH})\text{A}$
2250		
2200	2300	$\nu(\text{OH})\text{B}$
1695		
1667	1620	$\nu(\text{OH})\text{C}$
1604		$2\nu_1$ (?)
1570		$\nu_1 + \nu_3$
1256		
1233	1230	$\delta(\text{OH})$

TABLE 3

Raman Frequencies (cm^{-1}) of RbHSeO_4 at 20K and 300K (200 - 1000cm^{-1})

20K	300K	Assignment
959(sh)		
955	954	
920(sh)		
913	916	ν_3 (E in C_{3v}) & $\gamma(\text{OH})$ (?)
904(sh)	908(sh)	
844(vw)		$2\nu_4$
821	829	
802	816(sh)	ν_1
750(sh)	745(sh)	
739	733	ν_3 (A_1 in C_{3v})
430	420	
420		
405	405	
397	397	
394		
391		
373	375	ν_4
357	353	
331	334	
326		
317	320	
305	308	ν_2

TABLE 4

Raman Frequencies (cm^{-1}) of RbHSeO_4 at 20K and 300K (under 200cm^{-1})

20K	300K	Assignment
175(sh)		
163		
158	160	HSeO_4^- libration
140		
136		
111		
100	98	translation or libration
89		
76	77	
67	74	
64	62	translation
54	55	
49	49	
46		
36	35	

we feel that all frequencies obtained from different orientations and separated by less than 3cm^{-1} should be regarded as accidentally degenerate. We agree with most of their assignments with some minor exceptions, which may be noted in Tables 2-4.

As the sample is cooled the Raman bands narrow and a great deal of structure becomes evident within envelopes. With some exceptions, frequencies tend to shift downward slightly, but there are no clear indications of a phase change within the temperature range of this study.

The most remarkable feature of the low temperature spectrum is a simplicity nearly consistent with a monoclinic structure. The low symmetry of both the triclinic and monoclinic structures for RbHSeO_4

would give rise to 27 internal modes (disregarding OH motions). However, a monoclinic structure, such as that of the paraelectric phase, places the ions on general (C_1) and special (C_2) sites in a 2:1 ratio of occupancy. At the limit of diminishing interionic interaction the site group selection rules become operative. For example, in the space group $P2$, the site group predictions are two frequencies of type ν_1 , four frequencies of type ν_2 , and 6 frequencies each of types ν_3 and ν_4 . Furthermore, since the ratio of occupancy of general to special sites is 2:1, bands arising from similar motions of ions on C_1 and C_2 sites might be expected to show a 2:1 intensity ratio. We have found such a ratio of integrated intensities in at least three unambiguous band pairs: $(136, 140\text{cm}^{-1})$, $(331, 326\text{cm}^{-1})$, and $(821, 802\text{cm}^{-1})$. Other examples are suspected but cannot be verified, owing to the uncertainty inherent in graphical resolution of complex band envelopes. The number of internal mode frequencies observed at 20K is nearly consistent with the suggested monoclinic site model, were it not for one "extra" component each of ν_2 , ν_3 , and ν_4 , which it could be argued arise from minimal interionic vibrational coupling.

The apparent agreement of the low-temperature Raman spectrum of RbHSeO_4 with a monoclinic site model should not be taken alone as evidence for such a structure. Rather, the spectrum serves to emphasize the structural similarity between the paraelectric

(monoclinic) and ferroelectric (triclinic) phases. The loss of the two-fold axis in passing through T_c causes symmetry-related pairs of ions on general positions to become distinct. Our Raman results suggest that the distinction between these pairs of biselenate ions in the triclinic phase is slight - perhaps less than the X-ray data indicate.¹² Consequently, the triclinic structure might be described as pseudo-monoclinic.

The region of $\nu(\text{OH})$ and $\delta(\text{OH})$, above 1000cm^{-1} , exhibits some interesting changes with cooling (Figure 2). Typical of strongly hydrogen-bonded OH systems, $\nu(\text{OH})$ appears as a three-band ABC system, arising from Fermi resonance with $2\delta(\text{OH})$ and $2\nu(\text{OH})$.¹⁹⁻²¹ At 20K the B and $\delta(\text{OH})$ bands are split into doublets. The splitting of the C band is more complex, owing to the appearance of a relatively sharp band at 1570cm^{-1} and a more diffuse band at 1604cm^{-1} . The 1570cm^{-1} band is too sharp to be a $\nu(\text{OH})$ component and has been tentatively assigned to ν_1^{+} .³ Its appearance on cooling results from narrowing and shifting of the C band. The band at 1604cm^{-1} may be a third component of the C band or $2\nu_1$. In any event, the splitting observed throughout this region may be interpreted as the superimposing of the spectra of essentially two types of OH bonds in the pseudo-monoclinic structure.

We have not observed a band which can be assigned

to OH out-of-plane bending, $\gamma(\text{OH})$, owing to interference from ν_1 and ν_3 bands. From the assignment¹³ of $\gamma(\text{OD})$ to 625cm^{-1} , a $\sqrt{2}$ shift would suggest 884cm^{-1} as the location of $\gamma(\text{OH})$. However, this reasoning may be faulty, since RbHSeO_4 and RbDSeO_4 are not isostructural.¹⁴ Odinokov and Iogansen²¹ have developed a relationship by which $\gamma(\text{OH})$ can be estimated from the ABC band contour. Using this with our data, we expect $\gamma(\text{OH})$ at $900\pm25\text{cm}^{-1}$ in the temperature range of this study. Perhaps the weak band at 913cm^{-1} in the c(bb)a spectrum of Baran, *et al.* is this mode. We note, however, that for RbHSO_4 , a non-isomorphous compound with similar hydrogen bonding, $\gamma(\text{OH})$ is found in the range $730-825\text{cm}^{-1}$, depending on temperature and phase.²²

The movement of the OH bands suggests strengthening of hydrogen bonding with cooling. It is expected that $\nu(\text{OH})$ should shift down and $\delta(\text{OH})$ and $\gamma(\text{OH})$ should shift up with increasing strength. Only the movement of the C band appears to be contrary to this. Since the maximum of this band is expected to be influenced by $\delta(\text{OH})$, with which it is in Fermi resonance, the probable shift of $\delta(\text{OH})$ to higher frequency may account for the observed shift in the C component.

ACKNOWLEDGEMENTS

This work was supported in part by a University of Massachusetts Faculty Growth and Development Grant to R.L.C. We are grateful to Dr. T. N. Margulis of this department for assistance and helpful discussions

regarding the x-ray structural aspects of this study.

The participation of students Patricia Davis and Francis Gondouin in syntheses and analyses is appreciatively acknowledged.

REFERENCES

1. J. J. McMahon, Master's Thesis, University of Massachusetts-Boston, 1978.
2. R. Poprawski, J. Mróz, Z. Czapla, and L. Sobczyk, *Acta Phys. Pol.*, A55, 641 (1979).
3. Z. Czapla, T. Lis, and L. Sobczyk, *phys. stat. sol.*, A51, 609 (1979).
4. S. Suzuki, T. Osaka, and Y. Makita, *J. Phys. Soc. Japan*, 47, 1741 (1979).
5. K. Gesi, *J. Phys. Soc. Japan*, 48, 1399 (1980).
6. J. Mróz and Z. Czapla, *Acta Phys. Pol.*, A59, 571 (1981).
7. Z. Czapla, T. Lis, L. Sobczyk, A. Waśkowska, J. Mróz, and R. Poprawski, *Ferroelectrics*, 26, 771 (1980).
8. R. Poprawski, J. Mróz, and Z. Czapla, *Acta Phys. Pol.*, A57, 429 (1980).
9. R. Poprawski, private communication.
10. A. Pietraszko, A. Waśkowska, S. Olejnik, and K. Żukaszewicz, *Phase Transitions*, 1, 99 (1979).
11. A. Waśkowska, S. Olejnik, and K. Żukaszewicz, *Cryst. Struct. Comm.*, 9, 663 (1980).
12. A. Waśkowska, S. Olejnik, K. Żukaszewicz, and T. Głowiąk, *Acta Cryst.*, B34, 3344 (1978).
13. J. Baran, Z. Czapla, M. M. Ilczyszyn, and H. Ratajczak, *Acta Phys. Pol.*, A59, 753 (1981).
14. Z. Czapla and L. Sobczyk, *phys. stat. sol.*, A59, K161 (1980).
15. J. F. Norris and W. A. Kingman, *Am. Chem. J.*, 26, 318 (1901).
16. A. I. Kruglik and M. A. Simonov, *Krystallografiya*, 22, 1082 (1977); *Sov. Phys. Crystallogr.*, 22, 617 (1977).
17. K. Gesi, *J. Phys. Soc. Japan*, 42, 1785 (1977).
18. R. Paetzold and H. Amoulong, *Z. anorg. allg. Chem.*, 317, 166 (1962).
19. D. Hadži, *Pure Appl. Chem.*, 11, 435 (1965).
20. M. F. Claydon and N. Sheppard, *Chem. Comm.*, 1969, 1431.
21. S. E. Odinokov and A. V. Iogansen, *Spectrochim. Acta*, 28A, 2343 (1972).
22. N. Toupry, H. Poulet and M. LePostollec, *J. Raman Spectrosc.*, 11, 81 (1981).

Received: February 16, 1982

Accepted: March 16, 1982